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By making use of perturbation techniques, we develop a theory of the non- 
linear steady state. We find that the linear term of a mechanical equation 
such as the Langevin equation is not responsible for the nonlinear terms 
of its expectation values at the" nonequilibrium state arbitrarily far from 
the thermal equilibrium. The nonlinear steady state is formulated in the 
two cases where the microscopic conservation law exists and where it does 
not exist. The expressions for the expectation values of the physical quan- 
tities at the steady state are obtained as the functions of other physical 
quantities which are regarded as the parameters of the steady state. The 
stability and the instability of the steady state are discussed. A difference in 
the character of the instability of the steady state from that of the stationary 
state is discussed. It is noted that the first expansion coefficient should not 
exhibit an anomaly for instabilities of the steady state. The relation between 
the mechanical forces appearing in our approach and the corresponding 
thermal forces is discussed. The variational principle which is valid for the 
open system is developed. 

KEY WORDS: Steady state; nonlinear; stability; instability; balance 
equation; open system; variational principle. 

1, I N T R O D U C T I O N  

In  a p r ev ious  p a p e r  (~) ( re fer red  to as I he rea f te r )  we d e v e l o p e d  a genera l  

m e t h o d  to dea l  wi th  the  n o n e q u i l i b r i u m  states o f  a m a n y - b o d y  system,  

i nc lud ing  states  far  f r o m  t h e r m a l  e q u i l i b r i u m  state.  W e  discussed  a genera l  
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method of describing the system by means of one-body variables, e.g., the 
mean number density n(r, t) in space-time, at a state arbitrarily far from 
thermal equilibrium. As a result, it is possible for us to discuss the many-body 
system in terms of  a set of variables with much fewer degrees of freedom 
than the total number. Under certain conditions we can describe the system 
in terms of single-particle distributions in coordinate space at  all times. The 
complete thermal equilibrium state, which is determined by the homogeneous 
number density and also by the total energy, is an example. It is obvious that 
all states of a many-body system are not always a functional of the single- 
particle distribution function in coordinate space. There are the other variables, 
e.g., the energy density. The distinctions among various situations correspond 
to those among the external conditions or the histories of the system, as 
discussed in I. 

The method developed in I is, however, rather formal and it is hard to 
apply to individual problems directly. One of the most interesting phenomena 
at the nonequilibrium states of the many-body system is the situation at the 
steady state/2~ The main purpose of  this paper is to investigate the steady 
state, using the method developed in I. The steady state is defined as a state 
with constant time rates of  change of physical quantities or with constant 
currents. Thus the steady state is a nonequilibrium state. Furthermore, the 
steady state is a state of the " o p e n "  system. How can we deal with the 
steady state, and how can we calculate the expectation values of physical 
quantities at the steady state from first principles ? These basic questions about 
the steady state remain unsolved. We shall discuss this problem in this paper. 
We do not restrict ourselves to the state near the thermal equilibrium state, be- 
cause we think that the nonequilibrium state far from thermal equilibrium must 
have different aspects from those of the state near thermal equilibrium. An 
example is given in Section 5. We shall discuss the instability of the steady state. 

The basic idea developed in I is as follows. To characterize the non- 
equilibrium state uniquely, we first assume the existence of a thermal 
equilibrium state of an isolated system. Next we apply an external perturba- 
tion to the system to bring the system to a nonequilibrium state from an 
initial thermal equilibrium state. There are not always well-defined external 
perturbations. This is the reason why we have to choose a suitable set of the 
dynamic or the thermodynamic variables to describe the system more and more 
reliably within restricted degrees of freedom. Thus we use a set of imaginary 
external fields which act on a set of mechanical operators. We think that 
the theory of nonequilibrium statistical mechanics which might be established 
may not have complete correspondence with physical reality. One way to 
avoid this insufficiency in the theory is to choose measurable quantities such 
as the particle current or the energy current as the independent variables 
instead of the conjugate fields of these quantities. 
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To attain the steady state, a certain limiting procedure is necessary, 
since we discuss this with the aid of  an isolated system which is allowed to 
be infinitely large after having been disturbed by the external perturbations. 
The observed system is one of the subsystems of the total system. This sub- 
system is steady with time since the characteristic relaxation time of the total 
system becomes infinitely large when the system becomes infinitely large. 
This formal approach does not prevent us from applying our method to the 
actual phenomena. The surroundings of the actual system correspond to the 
remaining parts of our isolated system, which provide the stationary currents. 

The next section is devoted to general remarks on the theory developed 
in I. In Section 3 we discuss the steady state. It will be seen that the introduc- 
tion of a new variable instead of the conjugate variable of the external force 
makes it easy for us to formulate the steady state. In Section 4 we discuss the 
expectation values of physical quantities at the steady state as a function of 
the "f lux,"  which is not the mechanical variable. In Section 5 we discuss the 
stability and the instability of the steady state. It is noted that the instability 
of a steady state has a different character from that of a thermal equilibrium 
state. In Section 6 we discuss the relation between the external perturbations 
and the corresponding " the rma l"  forces. In Section 7 we discuss the varia- 
tional principle which is valid for the steady state. 

2. G E N E R A L  T H E O R Y  

In a previous paper (1~ we developed a general method for extracting a 
"relevant internal field" in a many-body system with the aid of the solution of 
the density matrix of the Liouville equation in the presence of the external 
perturbations/3~ As was discussed in I, we have to disturb the system to 
attain a nonequilibrium state if we use a thermal equilibrium state as an 
initial reference state. Then the nonequilibrium state is determined by the 
external perturbation 

s t) (I) 

which acts on a single-body operator ~(r), and by an initial state. We do not 
restrict Y. by specifying that it should actually exist, since we intend to discuss 
the actual phenomena plausibly, by choosing a suitable set of measurable 
quantities. The interactions between an observed system and its surroundings 
might be very complicated and the nonequilibrium state depends on these 
complicated interactions. For instance, the material properties of a container 
are responsible for the time dependence of the temperature of the hot water 
in it, while its final equilibrium temperature does not depend on the material 
properties of the container. This fact tells us that we should be careful to 
consider the mechanisms of the interactions between the observed system 
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and its surroundings. But we are not interested in dealing with such compli- 
cated interactions with the surroundings. We will describe the effects of 
surroundings, when it is necessary to do so, by choosing a set of measurable 
quantities as the independent variables. This means that we may specify a 
state as the state with " x  strength of the heat current" and with " y  strength 
of the particle current" and so on. 

Our approach to the nonequilibrium state is as follows. The perturba- 
tional Hamiltonian is written 

Hz = 8Z(t) (2) 

Thus an expectation value ~(t) of a physical quantity & is described as 

~(t) = c~(Z(t'); t > t') (3) 

For the properly chosen set of expectation values ~ we can describe Z as a 
function of ~: 

Z = Z(c 0 (4) 

Thus we have assumed that c~ and Z are single valued in (4). Finally, we can 
determine another expectation value az(t) of a physical quantity ~1 by making 
use of (3) and (4) as follows; 

= (5) 
These are our basic procedures to describe the nonequilibrium state by 
measurable quantities. It is natural to give an expectation value c, of a physical 
quantity & by 

~(t) = Tr o(t)a (6) 

where o(t) is the density matrix that satisfies the equation of motion 

is(t) = (1/ih)[Ho + Hi(t),  e(t)] (7) 

where the dot stands for time derivative, Ho is the unpurturbed Hamiltonian, 
and 

[A, B] = AB  - BA (8) 

Let us expand (3) and (4) as follows: (la) 

c~(t) = j BE(t1) z=?( t l )  dtl 

+ ~ f ~v,8.~~ , Y,(tl)Z(t~.) dq dt= + " "  
oz.U1) o~u2) I~ = o 

= f Go(t; t l )Z( t l )dt l  + � 89  Go(t; tl, t=)Z(t,)Z(t2)dt 1 dt z +... 

1 f G0(t; q, t=,..., t ,)Z(q)Z(t2)".Z(t,) dq.. .dt,  + ... (9) + E . ,  
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j ~-a~) (a~(t) I ~lf a~(t-7 ~(t2)a2~(t) Z(t) = ~=o~(t~) dtl + ~=oC~(t~)c~(tg.) 

• dq  tit2 + ... 

= j Ko(t; t~)~(t,) dt~ + ~j Ko(t; t~, t~)~(t~)~(t~) dt~ dt~ +... 

1 
f Ko(t; tl t2 .... , t~)c~(tl)c~(t2)...a(t,) dt~ dt2...dtn + ~ .  

+ ... (lO) 

Let us define the quantities 

G(t; tl ..... t .) = 8"~(t)/SZ(tl) . . .3Z(t .)  (11) 

K(t;  tl .... , t ,) - 3"Z(t)/3u(tl). . .3u(t.) (12) 

Then we obtain the relations among these quantities 

f G(t; t ' )K( t ' ;  it) dr' = f K ( t ;  t ' )G(t ' ;  tt) at '  = a(t - tt) (13) 

K(t;  t t ,  t2) = - ( K(t;  t ')G(t '  ; t, ' ,  t2')K(t, ' ,  q)K(t2'  ; t~) dr1' dr2" dr' 
~J 

(14) 

K(t;  q ,  t2, ta) = 3 f K(t; t ' )G(t '  ; t~', t2 ' )K(q'  ; tl)K(t2' ; t~) 

Grt,,. ,,, , , , .  • ~2, t2, t~ )K(t2, t2)K(tz'; ta) dr' dt~' dr2' 

f ' , 
x dr;' dt~ - K(t;  t ' )G(t ';  q ,  t2,  ta')K(tl '; t~) 

x K(t2'; t2)K(ta'; ta) dq '  dr2' dta' dr' (15) 

and so on. These relations immediately follow if we perform a variation of 
(13) so as to get (14) and perform a variation of (14) so as to get (15) and so 
on. The above relations also hold if we replace G and K by K and G, respec- 
tively. Next we examine the expansion of (5): 

( & q ( t )  I ( ) dt~ + 1 ( 32~,(t) o~j_(t) 

x ~(tl)~(t=) dr, dt= +. . .  

f ' f  = M0(t; t~)~(q) dq  + N Mo(t, q ,  t2)~(tO~(t~) dt~ dt~ +.. .  

1 
f Mo(t; t~ ..... t,~)~(t~)~(te)...~(&) dt~...dt,~ + ... (16) +N 

Let us define the quantities 

M(t ;  t~ .... , t~) =- 3%q(t)/Sc~(tx)...Sc~(t~) (17) 
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Our task is to rewrite (17) in terms of  G, K, and 

Gl(t; tl .... , tn) - $~a~(t)/3E(t~)...3Z(t~) (18) 

We obtain 

f 8al(t)3Y,(t ')  f M(t; tz) = 3Y,(t') 3e(q) dt' = Gl(t; t ')K(t '  ; tl) dt' (19) 

8M(t; q) f aG~(t; tx') v t - ,  
M(t; tl ,  t2) = 3~(t2) = ~ ( t ~  .~,tl ; q) dq'  

f 3K(t ' ;  q) dt' + G~(t; t') 3a(t2) 

= f Gl(t; q' ,  t2')K(t~'; t~)K(t2'; t z )dq '  dt2' 

+ f G~(t; t ')K(t ';  q ,  t2)dt' (20) 

M(t; tl ,  t2, ta) = f G~(t; q',  t2', ta')K(q' ; q)K(t2' ; t2)K(ta' ; ts) 

' f ' t '~t"tt '" tl)K(tz'; t2, ta) x dtl 'dt2'dta + 3 G l ( t ; t l ,  2 J , ~ 1 ,  

• dt~' dt2' + fc (t; t~')K(t~'; t~, t2, t3) dt~' (21) 

and so on. 
It  is interesting to know some aspects on the nonlinear terms of  the 

expansion (16). We put  

&~(t) = f O(t; t')&(t') dt' + f ( t )  (22) 

where the t ime-dependent  operators  are defined by the Heisenberg represen- 
tat ion (27). We denote the expectation value o f f ( t )  at a nonequil ibrium state 
b y f ( t ) .  Then  we get 2 

c~(t) = f O(t; t')a(t') dt' + f ( t )  (23) 

Thus  we get 

hence we get 

M(t; tl) = O(t; tl) + 3f(t)/3a(tl) 

M(t;  tl,  t2) = 32f(t)/3a(tl) 3a(t2) (24) 

2 If we use the Heisenberg representation (27) for the operator, the expectation value 
of the operator at a nonequilibrium state is given by making use of q(t) defined in the 
next section instead of p(t). When q(t) depends on time it seems that (23) does not 
follow from (22) directly. But the results derived below are correct. 



Statistical Mechanical Theory of the Nonlinear Steady State 145 

We can readily write down explicit forms of Go and Glo as (a) 

Go(t; tl .... , t,) = (1/ih)'PO(t - h ) . . .O( t ,_ l  - t ,)  

x ([-..[[&(t), a(tl)], •(t2)]...])o (25) 

Glo(t; tl ..... t,) = (l / ih)"PO(t - h) . . .O(t ,_z  - t ,)  

x ([..-[[81(t), 8(tl)], 8(t2)1..-])0 (26) 

where the symbol P denotes the summation over all permutations of the 
arguments (fi,..., t~) and 

A ( t )  = {exp [ - i ( H o / h ) t ] } A  exp [i(Ho/h)t] (27) 

{10 t > 0  O(t) = (28) 
t < 0  

and ( ' " )0  denotes the ensemble average at a reference state described by 
/40. 

Since M(t ;  tl .... , t ~) (n > 2) does not contain any contributions from 
a(t) explicitly, it follows that we may put a~( t ) -+f ( t )  in (26) to compute 
G,o(t; t~,..., t~) (n t> 2) for M. Furthermore, if we choose f ( t )  so that the 
contribution from f ( t )  to G,o(t; t ')  vanishes, the nonlinear terms of the 
expansion (16) do not contain G~0(t; t'). Anyhow, the contributions from 
the first term on the right-hand side of (22) to the nonlinear terms of the 
expansion (16) have to be cancelled out at each order of the expansions. If 
we choose al(t ) as (d/dt)&(t) in (22), then (22) becomes equivalent (1~ to the 
Mori equation of generalized Brownian motion5 s) Thus we have discussed 
the relation between the linear Mori equation and the nonlinear equation 
of motion for the expectation value of the physical quantity referring to the 
variable of the Mori equation. 

3. S T E A D Y  STATES 

In this section we shall discuss the steady state. The first attempt at 
nonequilibrium statistical mechanics by means of the density matrix in the 
case of a system where the well-defined external perturbation does not 
exist was done by Mori (6) and also by Kubo et al. (7) These authors used the 
modified density matrix for the initial ensemble. Later Kadanoff and Martin (8) 
discussed this problem by making use of a time-dependent perturbation 
which is switched off at time zero. The above two approaches are equivalent 
to one another. They only seem to be different because of their different 
quantum mechanical representations. Our approach is also consistent with 
these approaches. The only difference is that our imaginary external perturba- 
tion depends on time in an arbitrary way (m and therefore we cannot get the 
local canonical distribution function, which was used by the above authors. 
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The absence of  the local canonical  distribution function is not  essential to 
the final results in our  approach.  This is because the existence of  a local 
canonical  distribution function and the existence o f  a set o f  local parameters 
such as the local temperature and the local chemical potential are different 
things in the case of  the nonequilibrium states. For  practical reasons it migh t  
be convenient to assume that  the local parameters can be well defined even 
at a state far from thermal equilibrium. This can be expected to hold well at 
the steady state, since the steady state does not change with time and therefore 
we may define the parameters in order to describe it very well. 

N o w  we put ~ - a in (9). Let us first discuss only the first term of  (9): 

a(t) = ( G 0 ( t ;  h)Z(t l)  dq (29) 

I f  

then it follows that  there is no steady state when Z is finite. This is true, 
since 6 is constant  and does not  vanish at the steady state. Inequali ty (30) 
can be satisfied except at the critical point, if we assume the existence o f  the 
stationary s ta te?  If  the system is too large to relax to a thermal equilibrium 
state within a time interval comparable  with the microscopic relaxation time, 
the small but macroscopic subsystem behaves as if it is steady with time. To 
attain a steady state, we assume that  the total system is much larger than the 
observed subsystem. This assumption enables us to derive a relation between 
the force Z and the flux o at the steady state, using a certain limiting procedure 
to be mentioned later. Let us introduce the quanti ty 

q (t) --- {exp [ - (Ho/ih)t ]}p(t) exp [(Ho/ih)t ] (31) 

Then q(t) satisfies the equation o f  mot ion  

4(t) = (1 /m) [~ ( t ) ,  q(t)] (32) 

where 

~(~(t) = {exp [-(Ho/ih)t]}H~(t)exp [(Ho/ih)t] (33) 

We assume that  

q ( -  oo) = p ( -  oo) = Po (34) 

where po is the density matrix for a thermal equilibrium state described by 
Ho, Then (2) is written 

~ ( t )  = •(t)Z(t) (35) 

3 The meaning of the stationary state in this paper is that there is no current or no change 
in physical quantities with time. Thus the stationary state contains a thermal equilibrium 
state with inhomogeneities in space as well as without inhornogeneities in space. 



Statistical Mechanical Theory of the Nonlinear Steady State 147 

Let us introduce an opera to r  ](t)  = (d/dt)8(t);  then (35) is writ ten 4 

~ ( t )  = [(t ' )  dt '  Z(t) ,  X ( - o o )  = 0 (36) 

We can expand the expectat ion value I ( t )  of  ](t)  as follows: 

1 f Lo(t; h, . . . ,  t , )E(h) . . .E( t , )  dh . . .d t ,  (37) I( t )  = 

where 

L0(t; tl .... , t,) = (1/ih)~PO(t - t l) . . .O(t,_,  - t,) 

i(,:)d,,], fl 
- - o o  oo 

I f  E is the electric field, [(t)  is the current  operator .  Thus  we put  6 = e ~lx~, 
where e is the electric charge and x, is the posit ion of  the i th electron. The  
Lo(t; q)  reduces to the wel l -known fo rmula  (a'l~ for  the electrical conductivity.  
The  nonl inear  response to the external electric field was discussed by Bernard 
and Callen. az)'5 Fo r  more  general discussions, let us assume that  the external 
per turba t ion  Z(t)  depends also on spatial  posit ion, i.e., E = Z(r, t). We 
get 

~ ( t ) =  f [ J ~  ~(r, t ' ) d t ' l Z ( r ,  t) dr (39) 

instead of  (36). I f  the opera to r  ~(r, t) satisfies the continuity equat ion 

6(r, t) = - V . j ( r ,  t) (40) 

(39) becomes 

~ ( t )  = - .( f dr dt' V.j(r,  t ')Z(r, t) 

( f . dr dt '  V . ( j (r ,  t ' )Z(r ,  t)) + dr dr' j(r, t ) .VE(r ,  t) (41) 
J 

I f  we choose Z ~ 0 at the space boundary ,  then the first te rm vanishes and 
we get 

a~(t) = f f j(r, t').vy~(r, t)dt'dr = -  f f l(r, t'),~(r, t)dt'ar 

= j Q(r, t ) .F ( r ,  t) dr (42) 

Strictly speaking, (36) has to contain the term - a ( - ~ )  ~,, (t). But such a term would 
not contribute to the following results, if we assume that Go given by (25) vanishes 
when we put one or more than one of the arguments (h, t2,..., t,) to be -oo.(~ 
The responses of our physical quantities are essentially equivalent to those of Ref. 11. 
For other work on nonlinear responses of physical quantities see ReL 12. 
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where 
P t 

0(r, t) ~- - /  j(r, t') dr' (43) 
- a o  

Thus we get 

J(~) = ~ ~ Lo(~; ~1 ..... ~)F@I)...F(~) d~  df2...d~ (44) 

L0(~ ;  ~1, . . . ,  ~ )  

= ( 1 ) ~ p 0 ( ~ -  f l ) ' " 0 ( f , - 1 -  (~)(['"[J(~), 0(~)],'", Q(~.)])o (45) 

where we have introduced an abbreviation: (~) -= (r, t, v) (v = 1, 2, 3); v 
denotes the components of the vectors Q, j, and F; ~ > ~' means t > t ' ;  
and the integrations over ~t contain summations over v. The J terms denote 
the components of j. 

We expect the existence of the integral 

f L0(t; t~) dq...dt~ (46) tt,  t2,..., 

for the existence of the steady state, This is, however, not equivalent to the 
assumption of the existence of the integral 

f Go(t; t~,..., t~) dtl...dt~ (47) 

The latter is for the existence of a stationary state, hence for a thermal 
equilibrium state, and we expect it to hold more generally than the former 
integral. We are dealing with an isolated system. Thus it is necessary to make a 
certain limiting procedure to attain a steady state. Let the space-time depen- 
dence of the field F in (44) be given by 

F(~:) = F~ exp (ik.r - kot) (48) 

Then we get 

1 f Lo(~; ~:l (.) exp [ik-(rl +.. .  + r.) - ioa(tl +... + t.)] J ( s  = ~., .... , 

x F~...F~, d~...d~,~ (49) 

1 &i f ;  k, o~)F~...F~, (50) 
{vO n 

where 

�9 s vz ,..., k, ~o) _= _( Lo(sr ~x ,..., 

x exp [ik.(r~ + . - .+  r,O - ir + . . . +  t,~)] 

x dr1 dr2...dr, dtl dt2...dt. (51) 
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To attain the steady state, we take the limit 

~0(v; v~ .... , v~) = {lim{lim{lim ~o(v; v~,..., u~, k, co)}}} (52) 

where V is the volume of the system. If  we take the limit o~-+ 0 before 
we take the limit k ~ 0, ~q~0 will vanish, since the system reaches a stationary 
state where no current exists. 

If the system consists of N identical atoms interacting by spherical 
interatomic potentials, we may choose the energy current and the particle 
current as the independent variables for a steady state. Then the perturbation 
Hamiltonian is written as 

H1 = f ~o(r)~(r, t )+  ~(r)x(r, t) (53) 

x = fi(r, t)X(r, t) (54) 

where ~0(r) and N(r) are the Hamiltonian density and the particle density 
whose Heisenberg representations obey the microscopic conservation laws: 

~@0(r, t) + V.jE(r, t) = 0 (55) 

~(r ,  t) + V.j(r, t) = 0 (56) 

where j, and j are the energy current and the particle current, respectively. Then 
the conjugate forces are - Vfi(r, t) and - Vx = - (Vfl)X - fl(VX), respec- 
tively. The/~ is the deviation of the inverse temperature scaled by the tempera- 
ture of the initial stated, and X is the local chemical potential. Although this 
follows from a solution of the Liouville equation for the thermal equilibrium 
state, C8) it seems appropriate to think that this is the definition of these quanti- 
ties in the nonequilibrium state. 

It may seem that there is no appearance of the " the rma l"  forces in the 
theory. This is, however, not true. This problem will be discussed in Section 6. 

4. EXPECTATION V A L U E S  OF P H Y S I C A L  Q U A N T I T I E S  AT  
S T E A D Y  STATE 

Now we can discuss the expectation values of physical quantities at the 
steady state. Let cq be the expectation value of  the physical quantity ~t. We 
put the expectation value c~10 of &a at a thermal equilibrium state to be zero, 
cq0 = 0, for simplicity. Then it is necessary to determine the parameters which 
characterize the nonequilibrium state. We choose them the "f luxes"  I (or J). 
In the limit of vanishing I the system reaches a thermal equilibrium state 
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and al vanishes. Using (22), we ob ta in  

c~l(t) = ( Mo(t; t ' )a( t ' )  dr'  (57) 

Mo(t; t ' )  = f Glo(t"r)Ko('r; t ' )  dr (58) 

for small a. Hence if we put O(t; t ' )  =- Mo(t; t ')  in (22), we obtain 

= ~l(t) - f Mo(t; t ' )~( t ' )  d t '  (59) :(t) 

As was noted above,  we may replace ~(t) b y f ( t )  to obtain Mo(t; t~ .... , t~) 
(n /> 2) and therefore G~o(t; tl,..., t,). For  instance, we may use 

G[o(t; h )  =- (1/ih)O(t - t ' ) ( [ f ( t ) ,  d(t0])o - 0 (60a) 

G[o(t; q ,  t2) -~ (1/ih)2PO(t - q )O(q  - t2)([[ f ( t ) ,  ~(tl),] ~(t2)])o (60b) 

G~o(t; t~, t2, t3) = (1/ih)3PO(t - q )O(q  - t2)O(t2 - t3) 

x ([[If ( t ) ,  ~(t,)], ~(t~)], ~(t3)])o (60c) 

instead of  Gzo(t; q) ,  Glo(t; t~, t2), and Gz0(t; tz, t2, t3) so as to compute  
Mo(t; q ,  t2,..., t,) (n t> 2). The lowest order of  the expectation value az at a 
steady state is written 

~,i~(t) = (l/ih) dr' ([&~(t), [(~-') d~-'])o 

• Co(t'; t " ) l ( t " )  dr" (61) 

where we have introduced a quanti ty Co as the inverse matrix of  

p t"  

(1/ih)O(t - t ' ) ( [[ ( t ) ,  l I ( t" )  dt"])o (62) 
d . . .  o~ 

The second-order term is written 

a]z>(t) = �89 -2 f PO(t - ta')O(t~' - t2' ) 

? x ( [ I f ( t ) ,  I(~-~) d~'x], [(~'2) d~'z])o 
- < x )  - o o  

• Co(t~'; q)Co(tz ' ;  t2)I(tl)I(t2) dt~' dr2' dt~ dtz (63) 

In this way we get the formal expansion 

al( t  ) = ~ a~")(t) 

= 5-i. R i o ( t ;  t l ,  . . . .  , ( 6 4 )  
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In (64), ~ ( t )  may contain more than two arguments: 

~l( t , t ' ,  .... H ~) 

1 f Rio(t ,  t',..., t 'z'" tl t , )I( t l ) . ' . I ( t , )  dt i '"dt~ (65) 

As the steady state, we should put I to be constant in (64) or (65). Thus we get 

1 , t~ l~ ) i  . ~l(t, t ' , . . . ,  t 'l~) = ~ ,  ~ ~Pd(t ,  t .... , (66) 
TL 

where 
/ "  

J R10(t',..., t(~); tj ,..., tn) dtl. . .dtn (67) 10  

Since ~"d may possess the translation symmetry with respect to time, we can 
put 

~")ltlot ,..., H ~) = ~%~(t - T, .... t ~z~ - T) 

By choosing T = t, we get 

~0~(t,..., t (l~) = ~ ( 0 , . . . ,  t ~z~ - t) 

Equation (64) has the more general form 

I 
[ Rlo(6:; ~:1 ,~,~)I(~1)...I(s d~l...d~,~ (68) = , ,  

In (67) the same limiting procedure as in (52) has to be taken. 

5. STABIL ITY A N D  INSTABIL ITY  OF THE S T E A D Y  STATE 

In Section 2 we have assumed that Y and a are single valued. Such an 
assumption also has been made for the relation between the " f lux"  I (or J)  
and the " f o r c e "  Z (or F). These assumptions are necessary in order that the 
state of the system can be determined uniquely by half of these conjugate 
variables. Generally speaking, however, it is not correct to expect that 2; 
and cr are always single valued. This is due to the fact that we observe phase 
transitions in the many-body system. It is also known that the flux-force 
relation may become many valuedJ TM We shall discuss some general properties 
of the instability of  the steady state. 

Let us consider the expansions 

Jv = ~_, ~ (1/n !)s v 1 ,..., v,)Fvl...F~,, (69) 
(vD n 

g~ = ~_, ~ ,  (1/n !)~o(V, vl ..... v~)J~...Yv, (70) 
{vO n 
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where 5~ o in (69) is given by (52) and we have assumed that 

~fao(V; v1,..., v,) = ~,eo(V~; v,..., v,) (71) 

The G0 is the quantity which corresponds to Ko. Generally speaking, we can 
expect that the lowest order of  Go, i.e., ~0(/z, v), in (70) does not vanish in 
the case of the steady state. I f  ~0(/z, v) vanishes, spontaneous polarizations 
of the fluxes will occur without any external disturbances in an isolated 
system. Then we have no stationary state, hence no thermal equilibrium 
state of  the isolated system. In the case of the stationary state no such a 
restriction to the relation between cr and Z seems to exist, since we can choose 
equivalently cr and cr + const as the thermodynamic variables. In the case 
of a quantum mechanical system care must be taken since the phase of  
the wave function also provides extra mechanical degrees of  freedom. The 
instability with regard to the spontaneous polarization of the phase of the 
wave function, seen in the superconductivity and the superfluidity, causes a 
spontaneous polarization of the flux. In this case ~o(tZ, v) vanishes and the 
above postulate does not hold. Hence we do not consider the polarization 
of phases of the wave function. From above discussion the instability of a 
steady state occurs at finite values of the force F and the flux J. This does 
not mean that all components of  the flux have to have finite values, but one 
of them may have a finite value at least. 

For  simplicity let us consider the relations written in the following 
form: 

S = ~,  (1/n !)~Wo'"}F" (72) 

F = ~ (l/n!)~(o"U '~ (73) 

Then s162 and Go are the functions of the other components of the flux or 
the force, in general. We further make a simplification that other components 
of  the flux or the force are zero. Then No m does not vanish. Thus the possibility 
of appearance of the instability of the steady state depends on the properties 
of  the higher-order terms of the expansion (73). To illustrate this, we retain 
the first three terms of the expansion (73): 

F = ~col~J + 1~2~T2 ~oo ,, + (1/3!)~o ~aU8 (74) 

I f  ~o ~2z~ (l = 1, 2,...) identically vanish due to the symmetry of the system, we 
have to consider the following form: 

F = 0r + (1/3!)~'~o~'J 2 + (1 /5! )~P ' J  5 (75) 

When 

J = J*  = { - 3 ~ o  ~2~ -+ 3[(~o2~) 2 -~-~ooZ~m~ J /~oo (76) 
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~F/~J vanishes for (74), and when 

j2 = ( j . )2  = { - 4  v. ~0 (3~ _+ 4! t4~0r• - ~o0l@(1~(5~11/2~/~(5;~oo J z,-~oo (77) 

eF/~J vanishes for (75). The right-hand sides of  (74) and (75) possess maxima 
F+ and minima F_ corresponding to each J*.  Then J is a many-valued 
function of F in the region F_ < F < F+, and the steady state is unstable 
for a fixed force F (F_ < F < F§ For  the same reason that ~0 ~1~ does 
not vanish because of the existence of a stationary state, we also expect that 
F§ > 0 if the coefficient ~0 ~ does not contain other components of  the 
flux. I f  F§ < 0, then F = 0 in (74) or (75) gives many real roots for J 
and the stationary state J = 0 is no longer stable. The analogous discussion 
also holds for (72). In this case F is a many-valued function of J and the 
steady state is unstable for a fixed flux J. 

6. B A L A N C E  E Q U A T I O N S  

As was discussed earlier, there is no well-defined mechanical force 
referring to the " t h e r m a l "  disturbance, in general. Thus it is important  to 
discuss the relation between the mechanical forces which we have used for 
our procedures for the nonequilibrium state and the " t h e r m a l "  forces 
which arise from the "nonstat ionar iness"  of  the system. Let us consider (9) 
for c~ =- cr. This equation shows how the expectation value e of the conjugate 
quantity of  a field Z polarizes as a function of 2;. Next consider (10) for 
c~ =- e. This equation, although it is equivalent to (9), can be interpreted as 
showing how the field induced by the polarizing quantity ~ in the system 
balances with the applied external field 2;. Thus we can interpret (10) as a 
balance equation between the external field and the internal field: 

Z(t) = 2;int(t) (78) 

This concept of an internal field makes it easy to understand the " t h e r m a l "  
force, which arises from the inhomogeneity in the system. We have used 
imaginary external fields to attain a nonequilibrium state. Thus it seems that 
the system is driven to a nonequilibrium state or an equilibrium state by the 
mechanical perturbations. However, this difficulty can be removed in the 
following way. Let us assume that a system is in a thermal equilibrium state 
in the presence of an external perturbation. Next we switch off the external 
perturbation; then the system is in a nonequilibrium state at this time and 
will be driven to a thermal equilibrium state by the " t h e r m a l "  force Zth. It  
is easy to see that the " t h e r m a l "  force must be equal to the right-hand side 
of  (10). 

This is due to the fact that we may apply another mechanical field 2;'(t) 
which cancels the applied external field 2;: 

2; - Y~' = 0 (79) 
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instead of switching off Z. Thus we can think of the system being driven 
to a thermal equilibrium state by Z'. Since we expect to observe the same 
phenomena under these two situations, we conclude from (79) and (10) 

Zth = Z'  = rhs of (10) (80) 

which drives the system to a thermal equilibrium state. 

7. V A R I A T I O N A L  PRINCIPLE  

In a previous paper we developed a variational principle for the stationary 
state. The primary advantage of the variational principle developed in I is 
that we can distinguish an external field from an internal field and can make 
clear the external conditions of  the system. A formal theory can be constructed 
in the case of the steady state as in the case of  the stationary state. 

By making use of  (72) and (73) we can obtain variational functions 

~ tF(J, F) = J F  - ~ ,  [~q~o"~/(n + 1)!]F "+1 (81) 

o(J ,  F) = J F  - ~ [~o">/(. + 1)!]J T M  (82) 

Then if the flux J is fixed and plays the role of an external parameter, the 
state of  the system appears so as to give the extremum value of ~F: 

(~/~r)tF(J,  F) = 0 (83) 

I f  the force Fis  fixed, the state of  the system appears so as to give the extremum 
value of � 9  

(~/~J)*(J ,  F) = 0 (84) 

It  can be found that 'F and q~ are generalized functions due to Onsager. <~4> We 
denote the extremum values of tF and q~ by tFo and q~o, respectively. Thus 
we get 

We also find 

o r  

(1 1 'l c,o<n>~-.+l F = F(J) (85) 
' t o =  ,7! ( n + l ) ! l  - ~  ' 

? (1 1 '~ o~(.>.n+l J= J(F) (86) O0= ~-! (n+l ) !Uooo , 

dtFo = F(J)  d J, d~o = J(F)  dF 

F(J )  = dWo/dJ, J (F)  = d~o/dF (87) 
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The above integral forms for the relation between J and F are similar to 
those in the case of the stationary state.a) Since the steady state is not an 
equilibrium state, we cannot use the variational principle which is used for 
the stationary state in I. If  this variational principle is used, then the most 
probable state is the thermal equilibrium state and no flux exists. If  we use 
the closed system, the most probable state is the thermal equilibrium state 
due to the second law of thermodynamics. Hence the variational principle 
developed in this section is essentially valid for the open system, which we 
have characterized as a subsystem in a closed system. 

The variational functions (81) and (82) have following physical meanings. 
We can interpret (73) as a balance equation between the external force and 
the internal force 

F = Fin =--- ~,  (1/n!)~(on)J" (88) 
n 

for the same reason as in the case of (78). Then we get 
J P 

W(J, F) -=- Jo { r -  F~,(J')} dJ' (89) 

Thus W(J, F)  gives the total " w o r k "  done by the fixed external force F 
and by the induced internal force Fl~(J) to make the flux polarize from zero 
to a finite value J. Such an interpretation also holds for ~. The dimensions 
of this " w o r k "  are [energy/time]; hence this is not the true work. More 
detailed analyses of the properties of these variational functions and also 
of the variational principle itself will be made in future work. 

A D D E N D U M  

Recently K. Kawasaki and J. D. Gunton [Phys. Rev. A 8:2048 (1973)] 
also discussed the nonlinear steady state. They studied transport phenomena 
for the steady state and obtained interesting results, using projection operator 
techniques and the local canonical distribution function to establish the non- 
equilibrium state. As was shown in I, our approach seems to give a different 
definition of the projection operator for the linear Mori equation from the 
definition determined by the local equilibrium assumption. (s~ Thus our 
approach may lead to different results from theirs. 
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